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» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.
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Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

» The Program is defined by giving:

One differentiable function: F(x):R — R 3)
> Input:
Initial value: xg € Ng (4)
5)
» Qutput:
An ordered list of integers: {xn|x, € N} (6)

> HALTS: If xp41 = xn
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Output : xp € N
Halts : xm = X1
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» Note also, that implicit in the definition is that one program is defined via one
function for all inputs xp, i.e. the function is not allowed to depend on input
parameters. E.g. for a program that performs addition for two integers a + b, the
function is not allowed to depend on a or b as we would have different functions
for different inputs.
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Program : F i R — R, differentiable
Input : xg € N

Output : xp € N

Halts © xm = X1

> Note that in contrast to the typical definition of gradient descent and without
loss of generality we set the learning rate ¥ = 1 as we can incorporate constant
factors into the definition of F(x).

» Note also, that implicit in the definition is that one program is defined via one
function for all inputs xp, i.e. the function is not allowed to depend on input
parameters. E.g. for a program that performs addition for two integers a + b, the
function is not allowed to depend on a or b as we would have different functions
for different inputs.

> Finally, we can simplify the dynamics further by noting that we can choose
F(x) = (=F(x) + %XQ), leading to Xp41 = Xxn — %F(X)‘ = dill;(x)
X=Xp

X X=Xp

Leading to the simple Dynamics:
Xnt1 = f(xn) (7)

with f(xn) = di'xﬁ(x) (8)

X=Xp



Example: Collatz Sequence

4 .
Dymamics w1 = 0 = —Flen) = —Flon

Program : F or £ : R = R, diferentiable
Input : xg € N

Output 3y € ¥

Halts © xim = g1
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Output : xp € N
Halts : xm = xm41

» Define a function with:
d -~ X
(EVEN) —F(x)= < forallx=2-k €N
dx 2
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X
d - .
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» With dynamics xp4+1 = %ﬁ(X) and input xp = 3 we have:
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(
(

x = 5, UNEVEN): x3=3-x+1=3-5+1=16
x = 16, EVEN): xs =x3/2=16/2=38
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Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
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> (x =1, ONE): Xg = X7

> (HALT)



Translating the Collatz Conjecture

» Background:

ProgramF or £ : R —» B, diflerentiable
Input 29 € N
Output - xp € 1Y

Halts  xim = xXpmi1
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Halts : xim = X1

> Background:
> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)
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> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction

mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).
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> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
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define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction

mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

» Thus, if we can find a metric d for which the function T(x) = dixl:'(x),
computing the Collatz sequence, is a contraction mapping, the Banach fixed
point theorem says that repeated application of this function, will go to the
unique fixed point of this function for all initial values xp € X. By design the only
fixed point this function has is x=1, thus proving the Collatz conjecture.
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> Background:
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point theorem says that repeated application of this function, will go to the
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fixed point this function has is x=1, thus proving the Collatz conjecture.

> However, (R, |- |) does not trivially work as we would need
| FO) = S FO)I < alx—yl



Translating the Collatz Conjecture om0 L0+ 2 )

*
ProgramF or F : R —» R, diferentiable
Input 29 € N

Output - xp € 1Y

Halts : xm = X 41

> Background:

> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction
mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

» Thus, if we can find a metric d for which the function T(x) = dixl:'(x),
computing the Collatz sequence, is a contraction mapping, the Banach fixed
point theorem says that repeated application of this function, will go to the
unique fixed point of this function for all initial values xp € X. By design the only
fixed point this function has is x=1, thus proving the Collatz conjecture.

> However, (R, |- |) does not trivially work as we would need
| FO) = S FO)I < alx—yl

» Instead: |3x — 3y| > g|x — y| if x uneven and y uneven.



FRACTRANS - Motivation

d d.
Dynamics : xp41 = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : xp € N

Halts & xm = xm41

» The presented model is similar to FRACTRANS. A FRACTRAN program consists
of an ordered list of fractions {fi, f2, ..., fn}, fi € Q and the input x, € N is
multiplied with these fractions. The first multiplication that yields an integer
replaces xp with xp4+1 = f; - xp.
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d d.
Dynamics : xp41 = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xm41

» The presented model is similar to FRACTRANS. A FRACTRAN program consists
of an ordered list of fractions {fi, f2, ..., fn}, fi € Q and the input x, € N is
multiplied with these fractions. The first multiplication that yields an integer
replaces xp with xp4+1 = f; - xp.

Our model is similar in that we can interpret the FRACTRAN fractions fi, ..., fp
also as a set of linear functions f'(x) : R — R that are evaluated in sequence: _

Xpy1 = fi(xn) = fi - xn if fi(xn) € N. In our case the tangents of the function F:
d%F take the place of f'.



Addition

o % Fan) = 2
ynamics : xy41 = Xn — ~—F(xn) = —Flxn
il dx dx

Program < F or £ : R = R, diferentiable
Input : xg € N
Output 3y € 18

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,
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» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
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» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:
> (ADD) F(x) = 1x? forall x € N.



Addition Dynamies : xp41 = o — dixr(m - dixfm)

Program « F or £ : R = R, diferentiable
Input - xg € N

Output : xp € N

Halts X = 41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:
> (ADD) F(x) = 1x? forall x € N.

> (HALT) LF(x)=xforallx= 12K ke N



Addition

4 d.

Dynamics : xp41 = Xn — ~—F(xn) = —F(xn)
& x

Program : F or £ : R = B, diferentiable

nput : xg € N

Output : xp € I¥

Halts : xm = xm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way
» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

dF
dx
dF
dx

(x) x for all x € N.
x—xforallx—12kk€N
F(x)

F(x) smooth everywhere else.




Addition

d da.
Dynamics : x4y = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,

» We can perform addition with integer gradient descent in the same way:

» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

» Dynamics: x,11 =

/'_n\x

x) = x for all x € N.
x)—xforallx— 12k ke N.
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Addition

d d.
Dynamics : x4 1 = %0 = —Fon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD) F(x) = 1x? forall x € N.
> (HALT) F(x)=xforallx= 32K ke N.
> (ELSE) x) smooth everywhere else.
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> Input: xp = 273"
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Addition Dynamies : xp41 = 0 — dixr(m - dixfm)

Program < F or £ : R = R, diferentiable
Input : xg € N
Output 3y € 18

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD) F(x) = 1x? forall x € N.
> (HALT) F(x)=xforallx= 32K ke N.
> (ELSE) x) smooth everywhere else.
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» Dynamics: x,11 =
> Input: xp = 273"

> (ADD) x; = 2x = 22230 = pat13b—1



Addition

o % Fxn) = 2 Flom)
e xpi1 = x0 = = Fom) = = Fsn

Program < F or £ : R = R, diferentiable
Input : xg € N

Output : xp € N

Halts X = 41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,
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Input : xg € N

Output : xp € N

Halts X = 41
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and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
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Addition

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

o % Fxn) = 2 Flom)
e xpi1 = x0 = = Fom) = = Fsn

Program < F or £ : R = R, diferentiable

Input : x € N
Output : xp € N

Halts : xm = xpm41

» We can perform addition with integer gradient descent in the same way:

» Program/Function:

> (ADD)
> (HALT)
> (ELSE)
» Dynamics: x,11 =
> Input: xp = 273"
>

/'_n\x

x) =
x)—xforallx— 12k ke N.

x for all x € N.

™ ™

x) smooth everywhere else.

%\& oo

™
—
&
N

Il
w
X

(ADD) x; = 2xp = 22730 = 22+136—1
» (ADD) xp = %Xl — %2a+13b71 — 2a+23b—2
> .
> (ADD) x, = %2a+b30 — patbtiz—1 gy



Addition

d d.
Dynamics xp1 = 3 — — Fn) = - Flsn)
Program : For £ : R = B, diferentiable
nput : xg € N

Output : xp € I¥

Halts © xim = X 1

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

>
>
>

» Dynamics: x,11 =

(ADD)
(HALT)
(ELSE)

> Input: xp = 273"

>

>
>
>
>

(ADD) x; =
(ADD) x;

(ADD) x; =
(HALT) xpy1 =

/'_n\x

x) = x for all x € N.
x)—xforallx— 12k ke N.

™

x) smooth everywhere else.
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w
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x = %2a+13b71 — 2a+23b—2
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» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
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» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
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» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
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» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
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Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
> i,j,1,meNo, k € Nxg

> Example 3 - 2:
> xo = 233°7211°13° is of the form: A: 2/3/711'13° (x0)
> = = 312°307711013° = 2%317%11113° (INC3-DEC2)



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) FFx) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
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Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 for all x = 2'3/7¥11/13°

> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°

> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"

> (SWITCH2) FF(x) = rirmx for all x = 2'3717%1113!

> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"

» i,j,l,me No, k € Nyo

> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13° (x
= x = 3112%307211013% = 22317%11"13° (INC3-DEC2

0)
)
=0=2 11223 7211113° = 21327211%13° (INC3-DEC2)
= x3 =% 11213272112130 =2°337°11°13° (INC3-DEC2)

vVvyvyy



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVYyVYYVYY

(INC3-DEC2)

dx
(SWITCH1) 4 F(x)
(INC2-DEC3) 4 F(x) =
(SWITCH2) 4 F(x) =
(HALT) SF() =

i,j,1,m € Ny, k € Nsg
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
3:11233072110130 = 223'7%11"13°

= X1
= X2
= x3
= X4

3 11223 7211'13° =

4 F(x) = 3fx for all x = 2/3/7%11'13°

ﬁ 13- x for all x = 2713/7¥11/13°
21Uy for all x = 2'3/7%1113!
572 x for all x = 2/371711/13!
x for all x = 2/3/7°11'13"

21327211213°

3 11213272112130 = 20337211313
3%203372113130 =

2713472114130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 for all x = 2'3/7¥11/13°

> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
» i,j,l,me No, k € Nyo

> Example 3 - 2:
> xp = 233°7211°13° is of the form: A: 2/3/7%11/13° (x0)
> = = 311233072110130 = 223172111130 (INC3-DEC2)
> o= =3 11223 7211113° = 21327211%13° (INC3-DEC2)
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Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVYVYYVYYVYY

(INC3-DEC2) 4 F(x) = 3 x for all x = 2'3/7%1113°
(SWITCH1) 4 =

(INC2-DEC3) 4

(SWITCH2) 4

(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!

F(x) ﬁ 13- x for all x = 2713/7¥11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
F(x) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVYVYVYYVYYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp

= X7 =

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!
%21327111“131 = 223'7'11°13!

F(x) =3 Hx for all x = 2/3/7%11/13°
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Fx) =

(x
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)
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Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVVYVVYYVYYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp
= X7

= xg =

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313
3'11203372113130 2713472114130
ﬁ B:2713*7711%13° = 2°3°7111%13!
21120337111%13! = 21327711%13!
%21327111“131 = 223'7'11°13!
24122317111°13" = 2%3°7'11°13!

F(x) =3 Hx for all x = 2/3/7%11/13°

F(x) 21 x for all x = 2713/7%11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
Fx) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
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(INC2-DEC3)
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Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVVVYVVYYYVYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp
= X7
= Xg
= X9

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!
%21327111“131 = 2%3'7'11°13!
2l72317111%13! = 2%307111°13!
211233"7 11013t = 243717111713t

F(x) =3 Hx for all x = 2/3/7%11/13°

F(x) 21 x for all x = 2713/7%11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
Fx) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)

(SWITCH2)



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

» For that we need a function with:

> (INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(SWITCH2)
(HALT)
i,j,1,m € Ng, k € N5g
> Example 3 - 2:

2

dx
d F
dx
d
dx
d
dx
d
dx

vVVyVYYY

11.7-3

= X7

VVVVVVVYYVYVYYVYY

1173
21Uy for all x = 2'3/7%1113!

F(x)

F(x) =

F(x) = 5735 for all x = 2/3717%1113!
F(x) = x for all x = 2/3/7°11/13™

4 F(x) =2 Hx for all x = 2'3/7%1113°

x for all x = 2713/7%11'13°

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
= x = 3112%307211013% = 22317%11"13°
>x==1 11223 7211113° = 21327211213°
=>x3= 2 11213272112130 = 2°3%7211313°

= x4 = 3'11203372113130 2713472114130

= x5 213 5-13472114130 _ 203371117131

= x5 = & 112"3 71113131 = 21327111413t
%21327111“131 =22317111%13¢

= xg = &11223'7'11%13" = 2%307'11°13!

= x9 = & 11233"7 11813 = 243717111713

= x10 = 57 2'3 713! =

233070116130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(SWITCH2)
(HALT)



Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

» For that we need a function with:

> (INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(SWITCH2)
(HALT)
i,j,1,m € Ng, k € N5g
> Example 3 - 2:

2

dx
d F
dx
d
dx
d
dx
d
dx

vVVyVYYY

11.7-3

= X7

= X10 :27 i
= xq1 = 233°97011%13% = Xy

VVVVYVVVVYVYVYVYYY

1173
21Uy for all x = 2'3/7%1113!

F(x)

F(x) =

F(x) = 5735 for all x = 2/3717%1113!
F(x) = x for all x = 2/3/7°11/13™

4 F(x) =2 Hx for all x = 2'3/7%1113°

x for all x = 2713/7%11'13°

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
= x = 3112%307211013% = 22317%11"13°
>x==1 11223 7211113° = 21327211213°
=>x3= 2 11213272112130 = 2°3%7211313°

= x4 = 3'11203372113130 2713472114130

= x5 213 5-13472114130 _ 203371117131

= x5 = & 112"3 71113131 = 21327111413t
%21327111“131 =22317111%13¢

= xg = &11223'7'11%13" = 2%307'11°13!

= xg = 231123307 11813 = 243717111713

P 23717111713 =

233070116130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(SWITCH2)
(HALT)
(HALT)
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> X0 = no - pfy...pg.--Pg, With psi & {po, .., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N
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