Integer Gradient Descent

Nils Eckstein

Models of Computation

2020

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

» The Program is defined by giving:

One differentiable function: F(x):R — R 3)

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

» The Program is defined by giving:
One differentiable function: F(x):R — R 3)
> Input:

Initial value: xg € Ny (4)

(5)

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

» The Program is defined by giving:

One differentiable function: F(x):R — R 3)
> Input:
Initial value: xg € Ng (4)
5)
» Qutput:

An ordered list of integers: {xn|x, € N} (6)

Model Definition - Integer Gradient Descent

» Motivation: Gradient Descent is widely used in Machine Learning to optimize
complex functions. Here we present one possible formalization of gradient
descent as a model of computation.

» Dynamics:

Xnt1 = Xn — VF(X)‘X:X (1)
d
= X — —F(x) @)
dx X=Xp

» The Program is defined by giving:

One differentiable function: F(x):R — R 3)
> Input:
Initial value: xg € Ng (4)
5)
» Qutput:
An ordered list of integers: {xn|x, € N} (6)

> HALTS: If xp41 = xn

Model Definition - Integer Gradient Descent

Output : xp € N
Halts : xm = X1

Model Definition - Integer Gradient Descent

> Note that in contrast to the typical definition of gradient descent and without
loss of generality we set the learning rate ¥ = 1 as we can incorporate constant
factors into the definition of F(x).

Model Definition - Integer Gradient Descent

> Note that in contrast to the typical definition of gradient descent and without
loss of generality we set the learning rate ¥ = 1 as we can incorporate constant
factors into the definition of F(x).

» Note also, that implicit in the definition is that one program is defined via one
function for all inputs xp, i.e. the function is not allowed to depend on input
parameters. E.g. for a program that performs addition for two integers a + b, the
function is not allowed to depend on a or b as we would have different functions
for different inputs.

Model Definition - Integer Gradient Descent B

Program : F i R — R, differentiable
Input : xg € N

Output : xp € N

Halts © xm = X1

> Note that in contrast to the typical definition of gradient descent and without
loss of generality we set the learning rate ¥ = 1 as we can incorporate constant
factors into the definition of F(x).

» Note also, that implicit in the definition is that one program is defined via one
function for all inputs xp, i.e. the function is not allowed to depend on input
parameters. E.g. for a program that performs addition for two integers a + b, the
function is not allowed to depend on a or b as we would have different functions
for different inputs.

> Finally, we can simplify the dynamics further by noting that we can choose
F(x) = (=F(x) + %XQ), leading to Xp41 = Xxn — %F(X)‘ = dill;(x)
X=Xp

X X=Xp

Leading to the simple Dynamics:
Xnt1 = f(xn) (7)

with f(xn) = di'xﬁ(x) (8)

X=Xp

Example: Collatz Sequence

4 .
Dymamics w1 = 0 = —Flen) = —Flon

Program : F or £ : R = R, diferentiable
Input : xg € N

Output 3y € ¥

Halts © xim = g1

Example: Collatz Sequence

» Define a function with:

(EVEN) L) = X forall x=2- ke N
dx 2
(UNEVEN) dil?'(x) =3x+1forall x=2k+1, kEN#OQ
X
d -~
(ONE) —F(x)=xifx=1
dx

(ELSE) diiﬁ(x) #£x & diXF(x) #0 forall x e R\ N

Example: Collatz Sequence

» Define a function with:

(EVEN) L) = X forall x=2- ke N
dx 2
(UNEVEN) diﬁ(x) =3x+1forallx=2k+1, ke N#O
X
(ONE) L F(x) = xifx = 1
dx

(ELSE) diiﬁ(x) #£x & diiF(x) #0forall x e R\N

d/axk F(x=3) ¢ 16 /

b F(3=3) = 10| ™~ d/dxFx=4) =

N WA U N ® O
N WA e N ® O

|71 2 3 456 7 8 1®2 3 4 5 6 7 8

> - - d/dxF(x=1)=1

Example: Collatz Sequence

» Define a function with:
d -~ X
(EVEN) —F(x)= < forallx=2-k €N
dx 2
(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, keN#D0

X

d - .

(ONE) —F(x)=xifx=1
dx

(ELSE) diiﬁ(x) #£x & diXF(x) #0 forall x e R\ N

Example: Collatz Sequence

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

4 F(x) and input xo = 3 we have:

> With dynamics xp41 =

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %ﬁ(X) and input xp = 3 we have:
P> (x = 3, UNEVEN): x3=3x4+1=3-3+1=10

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

» Define a function with:
d -~ X
(EVEN) ——F(x) = = forall x =2 -k € N
dx 2
(UNEVEN) di/?'(x) =3x+1forall x=2k+1, kEN#OQ
X
d - .
(ONE) —F(x)=xifx=1
dx
d - d
(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx
» With dynamics xp4+1 = %ﬁ(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): x3=3x4+1=3-3+1=10
> (x = 10, EVEN): x; =x1/2=10/2=5

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

» Define a function with:
d -~ X
(EVEN) ——F(x) = = forall x =2 -k € N
dx 2
(UNEVEN) di/?'(x) =3x+1forall x=2k+1, kEN#OQ
X
d - .
(ONE) —F(x)=xifx=1
dx
d - d
(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx
» With dynamics xp4+1 = %ﬁ(X) and input xp = 3 we have:
P> (x = 3, UNEVEN): x3=3x4+1=3-3+1=10

> (x = 10, EVEN): x; =x1/2=10/2=5
P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

» Define a function with:
d -~ X
(EVEN) —F(x)= < forallx=2-k €N
dx 2
(UNEVEN) di/?'(x) =3x+1forall x=2k+1, kEN#OQ
X
d - .
(ONE) —F(x)=xifx=1
dx
d - d
(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx
» With dynamics xp4+1 = %ﬁ(X) and input xp = 3 we have:
(x = 3, UNEVEN): x3=3x4+1=3-3+1=10
(x = 10, EVEN): x; =x1/2=10/2=5
(
(

x = 5, UNEVEN): x3=3-x+1=3-5+1=16
x = 16, EVEN): xs =x3/2=16/2=38

\AAA4

Example: Collatz Sequence

Output : xp € N

Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %IZ_(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): x1=3-x%+1=3-3+1=10
> (x = 10, EVEN): x; =x1/2=10/2=5
P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16
> (x = 16, EVEN): xs =x3/2=16/2=18
> (x =8, EVEN): x5 = x4/2=8/2=14

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %IZ_(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): x1=3-x%+1=3-3+1=10
> (x = 10, EVEN): x2=x/2=10/2=5
P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16
> (x = 16, EVEN): xs =x3/2=16/2=18
> (x = 8, EVEN): X5 = x3/2 = 8/2 = 4
P> (x = 4, EVEN): X6 = x5/2=4/2=2

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %IZ_(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): xx=3x+1=3-3+1=10
> (x = 10, EVEN): x; =x1/2=10/2=5
P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16
> (x = 16, EVEN): xs =x3/2=16/2=18
> (x =8, EVEN): x5 = x4/2=8/2=14
P> (x = 4, EVEN): X6 = x5/2=4/2=2
> (x =2, EVEN): x1=x/2=2/2=1

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %IZ_(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): xx=3x+1=3-3+1=10
> (x = 10, EVEN): x; =x1/2=10/2=5

P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16
> (x = 16, EVEN): xs =x3/2=16/2=18

> (x =8, EVEN): x5 = x4/2=8/2=14

P> (x = 4, EVEN): X6 = x5/2=4/2=2

> (x =2, EVEN): x1=x/2=2/2=1

> (x =1, ONE): Xg = X7

Example: Collatz Sequence

Output : xp € N
Halts : xm = xm41

> Define a function with:

d - X

(EVEN) —F(x) = -~ forall x=2-k €N
dx 2

(UNEVEN) diﬁ(x) =3x+1forall x=2k+1, ke N#0

Ix
d -~

(ONE) —F(x)=xifx=1
dx
d - d

(ELSE) —F(x) # x <& —F(x) # 0 for all x ¢ R\ N
dx dx

» With dynamics xp4+1 = %IZ_(X) and input xp = 3 we have:

P> (x = 3, UNEVEN): xx=3x+1=3-3+1=10
> (x = 10, EVEN): x; =x1/2=10/2=5

P> (x =5, UNEVEN): x3=3-x%+1=3-5+1=16
> (x = 16, EVEN): xs =x3/2=16/2=18

> (x =8, EVEN): x5 = x4/2=8/2=14

P> (x = 4, EVEN): X6 = x5/2=4/2=2

> (x =2, EVEN): x1=x/2=2/2=1

> (x =1, ONE): Xg = X7

> (HALT)

Translating the Collatz Conjecture

» Background:

ProgramF or £ : R —» B, diflerentiable
Input 29 € N
Output - xp € 1Y

Halts xim = xXpmi1

Translating the Collatz Conjecture om0 S0+ 2)

Halts : xim = X1

> Background:
> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

Translating the Collatz Conjecture om0)+ 2)

ProgramF or F : R —» R, diferentiable
Input 29 € N
Output - xp € 1Y

Halts : xim = X1

> Background:
> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction

mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

Translating the Collatz Conjecture om0)+ 2)

ProgramF or F : R —» R, diferentiable
Input 29 € N
Output - xp € 1Y

Halts : xim = X1

> Background:

> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction

mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

» Thus, if we can find a metric d for which the function T(x) = dixl:'(x),
computing the Collatz sequence, is a contraction mapping, the Banach fixed
point theorem says that repeated application of this function, will go to the
unique fixed point of this function for all initial values xp € X. By design the only
fixed point this function has is x=1, thus proving the Collatz conjecture.

Translating the Collatz Conjecture om0)+ 2)

>
ProgramF or F : R —» R, diferentiable
Input 29 € N

Output - xp € 1Y

Halts : xim = X1

> Background:

> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction
mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

» Thus, if we can find a metric d for which the function T(x) = dixl:'(x),
computing the Collatz sequence, is a contraction mapping, the Banach fixed
point theorem says that repeated application of this function, will go to the
unique fixed point of this function for all initial values xp € X. By design the only
fixed point this function has is x=1, thus proving the Collatz conjecture.

> However, (R, |- |) does not trivially work as we would need
| FO) = S FO)I < alx—yl

Translating the Collatz Conjecture om0 L0+ 2)

*
ProgramF or F : R —» R, diferentiable
Input 29 € N

Output - xp € 1Y

Halts : xm = X 41

> Background:

> Banach Fixed Point Theorem:
Let (X, d) be a non-empty complete metric space with a contraction mapping
T : X — X. Then T admits a unique fixed point x* € X (i.e. T(x*) = xx).
Furthermore x* can be found as follows: start with an arbitrary element xp in X and
define a sequence x, by x, = T(x, — 1) for n > 1. Then x, — x*. (Wikipedia)

> Contraction Mapping:
Let (X, d) be a complete metric space. Then a map T : X — X is called a contraction
mapping on X if there exists g € [0, 1) such that d(T(x), T(y)) < qd(x, y).

» Thus, if we can find a metric d for which the function T(x) = dixl:'(x),
computing the Collatz sequence, is a contraction mapping, the Banach fixed
point theorem says that repeated application of this function, will go to the
unique fixed point of this function for all initial values xp € X. By design the only
fixed point this function has is x=1, thus proving the Collatz conjecture.

> However, (R, |- |) does not trivially work as we would need
| FO) = S FO)I < alx—yl

» Instead: |3x — 3y| > g|x — y| if x uneven and y uneven.

FRACTRANS - Motivation

d d.
Dynamics : xp41 = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : xp € N

Halts & xm = xm41

» The presented model is similar to FRACTRANS. A FRACTRAN program consists
of an ordered list of fractions {fi, f2, ..., fn}, fi € Q and the input x, € N is
multiplied with these fractions. The first multiplication that yields an integer
replaces xp with xp4+1 = f; - xp.

FRACTRANS - Motivation

d d.
Dynamics : xp41 = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xm41

» The presented model is similar to FRACTRANS. A FRACTRAN program consists
of an ordered list of fractions {fi, f2, ..., fn}, fi € Q and the input x, € N is
multiplied with these fractions. The first multiplication that yields an integer
replaces xp with xp4+1 = f; - xp.

Our model is similar in that we can interpret the FRACTRAN fractions fi, ..., fp
also as a set of linear functions f'(x) : R — R that are evaluated in sequence: _

Xpy1 = fi(xn) = fi - xn if fi(xn) € N. In our case the tangents of the function F:
d%F take the place of f'.

Addition

o % Fan) = 2
ynamics : xy41 = Xn — ~—F(xn) = —Flxn
il dx dx

Program < F or £ : R = R, diferentiable
Input : xg € N
Output 3y € 18

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,

Addition Dynamies : xp41 = o — dixr(m - dixfm)

Program « F or £ : R = R, diferentiable
Input - xg € N
Output 3y € 18

Halts : xm = xm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:

Addition

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:

Addition

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:
> (ADD) F(x) = 1x? forall x € N.

Addition Dynamies : xp41 = o — dixr(m - dixfm)

Program « F or £ : R = R, diferentiable
Input - xg € N

Output : xp € N

Halts X = 41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:
> (ADD) F(x) = 1x? forall x € N.

> (HALT) LF(x)=xforallx= 12K ke N

Addition

4 d.

Dynamics : xp41 = Xn — ~—F(xn) = —F(xn)
& x

Program : F or £ : R = B, diferentiable

nput : xg € N

Output : xp € I¥

Halts : xm = xm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way
» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

dF
dx
dF
dx

(x) x for all x € N.
x—xforallx—12kk€N
F(x)

F(x) smooth everywhere else.

Addition

d da.
Dynamics : x4y = %0 = —=Flon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,

» We can perform addition with integer gradient descent in the same way:

» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

» Dynamics: x,11 =

/'_n\x

x) = x for all x € N.
x)—xforallx— 12k ke N.

™

x) smooth everywhere else.

i‘\& Slafa
™

™
—
&
N

Il
w
X

Addition

d d.
Dynamics : x4 1 = %0 = —Fon) = —Flsn)
Program : For £ : R — R, diffrentiable

Input : 0 € N

Output : 3y € N

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD) F(x) = 1x? forall x € N.
> (HALT) F(x)=xforallx= 32K ke N.
> (ELSE) x) smooth everywhere else.

» Dynamics: x,11 =
> Input: xp = 273"

i‘\& Slafa
™

™
—
&
N

Il
w
X

Addition Dynamies : xp41 = 0 — dixr(m - dixfm)

Program < F or £ : R = R, diferentiable
Input : xg € N
Output 3y € 18

Halts : xm = xpm41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,
» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD) F(x) = 1x? forall x € N.
> (HALT) F(x)=xforallx= 32K ke N.
> (ELSE) x) smooth everywhere else.

i‘\& Slafa
™

™
—
&
N

Il
w
X

» Dynamics: x,11 =
> Input: xp = 273"

> (ADD) x; = 2x = 22230 = pat13b—1

Addition

o % Fxn) = 2 Flom)
e xpi1 = x0 = = Fom) = = Fsn

Program < F or £ : R = R, diferentiable
Input : xg € N

Output : xp € N

Halts X = 41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

» Dynamics: x,11 =

> Input: xp = 273"
> (ADD) x
> (ADD) x»

WIN I

&

%\& Sagle
™

™

™

™

x) = x for all x € N.
x)—xforallx— 12k ke N.

x) smooth everywhere else.

f\
S
N
Il
w
&

%2a3b — 23+13b71
%2a+13b71 — 2a+23b—2

Addition

o % Fxn) = 2 Flom)
e xpi1 = x0 = = Fom) = = Fsn

Program < F or £ : R = R, diferentiable
Input : xg € N

Output : xp € N

Halts X = 41

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%

and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

> (ADD)
> (HALT)
> (ELSE)

» Dynamics: x,11 =

> Input: xp = 273"
> (ADD) x
> (ADD) x»

>

WIN I

&

%\& Sagle
™

™

™

™

x) = x for all x € N.
x)—xforallx— 12k ke N.

x) smooth everywhere else.

f\
S
N
Il
w
&

%2a3b — 23+13b71
%2a+13b71 — 2a+23b—2

Addition

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

o % Fxn) = 2 Flom)
e xpi1 = x0 = = Fom) = = Fsn

Program < F or £ : R = R, diferentiable

Input : x € N
Output : xp € N

Halts : xm = xpm41

» We can perform addition with integer gradient descent in the same way:

» Program/Function:

> (ADD)
> (HALT)
> (ELSE)
» Dynamics: x,11 =
> Input: xp = 273"
>

/'_n\x

x) =
x)—xforallx— 12k ke N.

x for all x € N.

™ ™

x) smooth everywhere else.

%\& oo

™
—
&
N

Il
w
X

(ADD) x; = 2xp = 22730 = 22+136—1
» (ADD) xp = %Xl — %2a+13b71 — 2a+23b—2
> .
> (ADD) x, = %2a+b30 — patbtiz—1 gy

Addition

d d.
Dynamics xp1 = 3 — — Fn) = - Flsn)
Program : For £ : R = B, diferentiable
nput : xg € N

Output : xp € I¥

Halts © xim = X 1

» For addition the FRACTRAN program is {%} for an input encoding of xp = 223%
and will output 22+5,

» We can perform addition with integer gradient descent in the same way:
» Program/Function:

>
>
>

» Dynamics: x,11 =

(ADD)
(HALT)
(ELSE)

> Input: xp = 273"

>

>
>
>
>

(ADD) x; =
(ADD) x;

(ADD) x; =
(HALT) xpy1 =

/'_n\x

x) = x for all x € N.
x)—xforallx— 12k ke N.

™

x) smooth everywhere else.

i‘\& Slafa
™

™
—
&
N

Il
w
X

%2a3b — 23+13b71

RINTRINY
&
Il

x = %2a+13b71 — 2a+23b—2

§2a+b30 2a+b+13—1 ZN
— 2a+b+l3—1 Q N

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 x for all x = 2'3/7%1113°

» i,j,1,m € No, k € Nsg

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 x for all x = 2'3/7%1113°

> (SWITCH1) 4 F(x) = 2L x for all x =2713/7%11/13°

> i j,I,méeNg, k € Ny

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 x for all x = 2'3/7%1113°
> (SWITCH1) S F(x) = f7%x for all x = 271397"11113°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"

» i,j,1,m € No, k € Nsg

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
» i, j,1,meNg, k € Nxg

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
> i,j,1,meNo, k € Nxg

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
> i,j,1,meNo, k € Nxg

> Example 3 - 2:

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
> i,j,1,meNo, k € Nxg

> Example 3 - 2:
> xo = 233°7211°13° is of the form: A: 2/3/711'13° (x0)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
> i,j,1,meNo, k € Nxg

> Example 3 - 2:
> xo = 233°7211°13° is of the form: A: 2/3/711'13° (x0)
> = = 312°307711013° = 2%317%11113° (INC3-DEC2)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 33 x for all x = 2/3/7¥11/13°

dx
> (SWITCH1) FFx) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) FF(x) = rirmx for all x = 2'3717%1113!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
» i,j,l,me No, k € Nyo
> Example 3 - 2:
> xo = 233°7211°13° is of the form: A: 2/3/7K11/13° (x0)
> = = 311233072110130 = 223172111130 (INC3-DEC2)

> == 11223 7211113° = 21327211%13° (INC3-DEC2)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 for all x = 2'3/7¥11/13°

> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°

> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"

> (SWITCH2) FF(x) = rirmx for all x = 2'3717%1113!

> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"

» i,j,l,me No, k € Nyo

> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13° (x
= x = 3112%307211013% = 22317%11"13° (INC3-DEC2

0)
)
=0=2 11223 7211113° = 21327211%13° (INC3-DEC2)
= x3 =% 11213272112130 =2°337°11°13° (INC3-DEC2)

vVvyvyy

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVYyVYYVYY

(INC3-DEC2)

dx
(SWITCH1) 4 F(x)
(INC2-DEC3) 4 F(x) =
(SWITCH2) 4 F(x) =
(HALT) SF() =

i,j,1,m € Ny, k € Nsg
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
3:11233072110130 = 223'7%11"13°

= X1
= X2
= x3
= X4

3 11223 7211'13° =

4 F(x) = 3fx for all x = 2/3/7%11'13°

ﬁ 13- x for all x = 2713/7¥11/13°
21Uy for all x = 2'3/7%1113!
572 x for all x = 2/371711/13!
x for all x = 2/3/7°11'13"

21327211213°

3 11213272112130 = 20337211313
3%203372113130 =

2713472114130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in
"registers”, i.e. prime factors of the input to perform multiplication:
> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:
> (INC3-DEC2) 4 F(x) = 3 for all x = 2'3/7¥11/13°

> (SWITCH1) 4 F(x) = ﬁ 13- x for all x = 2713/7¥11/13°
> (INC2-DEC3) 4 F(x) = 28x for all x = 2/3/7%1113"
> (SWITCH2) L F(x) = 5733 for all x = 2'3717%11/13!
> (HALT) 4 F(x) = x for all x = 2/3/7°11'13"
» i,j,l,me No, k € Nyo

> Example 3 - 2:
> xp = 233°7211°13° is of the form: A: 2/3/7%11/13° (x0)
> = = 311233072110130 = 223172111130 (INC3-DEC2)
> o= =3 11223 7211113° = 21327211%13° (INC3-DEC2)
> == 11213272112130 =293%7211313° (INC3-DEC2)
> == 3%203372113130 =27137"11"13° (SWITCH1)
> = x = 2827 1307%11%130 = 293%7111%13! (INC2-DEC3)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVYVYYVYYVYY

(INC3-DEC2) 4 F(x) = 3 x for all x = 2'3/7%1113°
(SWITCH1) 4 =

(INC2-DEC3) 4

(SWITCH2) 4

(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!

F(x) ﬁ 13- x for all x = 2713/7¥11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
F(x) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVYVYVYYVYYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp

= X7 =

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!
%21327111“131 = 223'7'11°13!

F(x) =3 Hx for all x = 2/3/7%11/13°

F(x) 21 x for all x = 2713/7%11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
Fx) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVVYVVYYVYYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp
= X7

= xg =

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313
3'11203372113130 2713472114130
ﬁ B:2713*7711%13° = 2°3°7111%13!
21120337111%13! = 21327711%13!
%21327111“131 = 223'7'11°13!
24122317111°13" = 2%3°7'11°13!

F(x) =3 Hx for all x = 2/3/7%11/13°

F(x) 21 x for all x = 2713/7%11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
Fx) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b
» For that we need a function with:

>

vVVyVYYY

VVVVVYVVYYYVYY

(INC3-DEC2)

dx
d —
(SWITCH1) 4 = 213
(INC2-DEC3) 4
(SWITCH2) 4
(HALT) 4 x for all x = 2/3/7°11/13™

i,j,1,mée€ Ng, k € Nso
> Example 3 - 2:

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°

= X1
= X2
= x3
= X4
= X5
= Xp
= X7
= Xg
= X9

3:11233072110130 = 223'7%11"13°

3 11223 7211'13° = 21327211%13°

3 11213272112130 = 20337211313°
3'11203372113130 2713472114130
ﬁ 13.271347211%13% = 20337111%13¢
21120337111%13! = 21327711%13!
%21327111“131 = 2%3'7'11°13!
2l72317111%13! = 2%307111°13!
211233"7 11013t = 243717111713t

F(x) =3 Hx for all x = 2/3/7%11/13°

F(x) 21 x for all x = 2713/7%11/13°
E(x) = 2x for all x = 2'3/7%11/13!
F(x) = g7irmx for all x = 2371741113
Fx) =

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)

(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)

(SWITCH2)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

» For that we need a function with:

> (INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(SWITCH2)
(HALT)
i,j,1,m € Ng, k € N5g
> Example 3 - 2:

2

dx
d F
dx
d
dx
d
dx
d
dx

vVVyVYYY

11.7-3

= X7

VVVVVVVYYVYVYYVYY

1173
21Uy for all x = 2'3/7%1113!

F(x)

F(x) =

F(x) = 5735 for all x = 2/3717%1113!
F(x) = x for all x = 2/3/7°11/13™

4 F(x) =2 Hx for all x = 2'3/7%1113°

x for all x = 2713/7%11'13°

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
= x = 3112%307211013% = 22317%11"13°
>x==1 11223 7211113° = 21327211213°
=>x3= 2 11213272112130 = 2°3%7211313°

= x4 = 3'11203372113130 2713472114130

= x5 213 5-13472114130 _ 203371117131

= x5 = & 112"3 71113131 = 21327111413t
%21327111“131 =22317111%13¢

= xg = &11223'7'11%13" = 2%307'11°13!

= x9 = & 11233"7 11813 = 243717111713

= x10 = 57 2'3 713! =

233070116130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(SWITCH2)
(HALT)

Looping and states: Multiplication

» Similar to FRACTRANS (and thus register machines) we can store state in

"registers”, i.e. prime factors of the input to perform multiplication:

> Input: 233070110139 5 > b the desired result will be stored in register 11: 112b

» For that we need a function with:

> (INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(SWITCH2)
(HALT)
i,j,1,m € Ng, k € N5g
> Example 3 - 2:

2

dx
d F
dx
d
dx
d
dx
d
dx

vVVyVYYY

11.7-3

= X7

= X10 :27 i
= xq1 = 233°97011%13% = Xy

VVVVYVVVVYVYVYVYYY

1173
21Uy for all x = 2'3/7%1113!

F(x)

F(x) =

F(x) = 5735 for all x = 2/3717%1113!
F(x) = x for all x = 2/3/7°11/13™

4 F(x) =2 Hx for all x = 2'3/7%1113°

x for all x = 2713/7%11'13°

xo = 233°7211°13° is of the form: A: 2'3/7K11/13°
= x = 3112%307211013% = 22317%11"13°
>x==1 11223 7211113° = 21327211213°
=>x3= 2 11213272112130 = 2°3%7211313°

= x4 = 3'11203372113130 2713472114130

= x5 213 5-13472114130 _ 203371117131

= x5 = & 112"3 71113131 = 21327111413t
%21327111“131 =22317111%13¢

= xg = &11223'7'11%13" = 2%307'11°13!

= xg = 231123307 11813 = 243717111713

P 23717111713 =

233070116130

(x
(INC3-DEC2

0)
)
(INC3-DEC2)
(INC3-DEC2)
(SWITCH1)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(INC2-DEC3)
(SWITCH2)
(HALT)
(HALT)

Turing Completeness

» Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Turing Completeness

» Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

»> Let f = {fi,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

Turing Completeness

» Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

»> Let f = {fi,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.

Turing Completeness

» Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

»> Let f = {fi,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.
(START): 9 F(x)=fix forall x=k-pr, k€N
(f1 Q): F(x) = f_lfgpfzx forall x e Q\Nand x =k -pr1,k €N

v

v

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

> (f1 Q): 4 F(x) = f—lfzpfzx forall x e Q\Nand x = k- pr, k €N
>

(f2 Q): dF(X)—f 11‘3”f3xi’oraIIXEQ\NandX—k pr2, k €N

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

> (f1 Q): 4 F(x) = f—lfz"fzx forall x e Q\Nand x = k- pr, k €N

> (f2Q): d%le() =1 11‘3”f3xi’oraIIXEQ\NandX—k pr2, k €N
> (fi Q): SE() =M i P x for all x € Q\ N and x = k- pi, k €N

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> X0 = no - pfy...pg.--Pg, With psi & {po, .., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

> (f1 Q): 4 F(x) = f—lfzmx forall x e Q\Nand x = k- pr1, k € N

> (f2 Q): d%le() =1 11‘3”f3xi’oraIIXEQ\NandX—k pra, k €N
> (fi Q): G F(x)=f" lf;+1pf’—+_1x forall x € Q\Nand x = k- pg, k € N
> (fi N): %I:_(X) = ‘;)”x for all x € N and x = k - pi, psi # pr1, k €N

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> xo =g - p}y...p...pY with ps & {po, ..., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

> (f1 Q): 4 F(x) = f—lfzmx forall x e Q\Nand x = k- pr1, k € N

> (f2Q): dllil() =1 11‘3”f3xi’oraIIXEQ\NandX—k pra, k €N
> (fi Q): 4 F(x)=f'f; 11285 x for all x € Q\N and x = k- pjj, k € N
> (fi N): dilz_(x) ‘;“xfor all x e Nand x = k- psi, psi # pr1,k € N

> (fn Q): dil:'() p"a’ff Ixforall x e Q\Nand x =k - ps, k €N

Turing Completeness

v

Integer Gradient Descent is Turing complete as we can simulate every
FRACTRAN program:

Let f = {f,..., fa} be an ordered list of fractions, a FRACTRAN program and
initial value ng = HL\’:O Py € N, py prime and jx € No

v

> X0 = no - pfy...pg.--Pg, With psi & {po, .., pn} prime.

> (START): 9 F(x)=fix forall x=k-pr, k€N

> (f1 Q): 4 F(x) = f—lfzmx forall x e Q\Nand x = k- pr1, k € N

> (f2 Q): d%le() =1 11‘3”f3xi’oraIIXEQ\NandX—k pra, k €N
> (fi Q): G F(x)=f" lf;+1pf’—+_1x forall x € Q\Nand x = k- pg, k € N
> (fi N): d%lz_(x) = ‘;)”x for all x € N and x = k - pi, psi # pr1, k €N

> (fn Q): dixﬁ(x):";—;nfrfn x forall x e Q\Nand x = k- ps, k €N

> (HALT): 4 F(x) = x for all x = k - ppae, k €N

